2 research outputs found

    Intergration of control chart and pattern recognizer for bivariate quality control

    Get PDF
    Monitoring and diagnosis of mean shifts in manufacturing processes become more challenging when involving two or more correlated variables. Unfortunately, most of the existing multivariate statistical process control schemes are only effective in rapid detection but suffer high false alarm. This is referred to as imbalanced performance monitoring. The problem becomes more complicated when dealing with small mean shift particularly in identifying the causable variables. In this research, a scheme that integrated the control charting and pattern recognition technique has been investigated toward improving the quality control (QC) performance. Design considerations involved extensive simulation experiments to select input representation based on raw data and statistical features, recognizer design structure based on individual and Statistical Features-ANN models, and monitoring-diagnosis approach based on single stage and two stages techniques. The study focuses on correlated process mean shifts for cross correlation function, ρ = 0.1, 0.5, 0.9, and mean shift, μ = ± 0.75 ~ 3.00 standard deviations. Among the investigated design, an Integrated Multivariate Exponentially Weighted Moving Average with Artificial Neural Network scheme provides superior performance, namely the Average Run Length for grand average ARL1 = 7.55 7.78 ( for out-of-control) and ARL0 = 491.03 (small mean shift) and 524.80 (large mean shift) in control process and the grand average for recognition accuracy (RA) = 96.36 98.74. This research has provided a new perspective in realizing balanced monitoring and accurate diagnosis of correlated process mean shifts

    Design Methodology of Modular-Ann Pattern Recognizer for Bivariate Quality Control

    Get PDF
    In quality control, monitoring unnatural variation (UV) in manufacturing process has become more challenging when dealing with two correlated variables (bivariate). The traditional multivariate statistical process control (MSPC) charts are only effective for triggering UV but unable to provide information towards diagnosis. In recent years, a branch of research has been focused on control chart pattern recognition (CCPR) technique. However, findings on the source of UV are still limited to sudden shifts patterns. In this study, a methodology to develop a CCPR scheme was proposed to identify various sources of UV based on shifts, trends, and cyclic patterns. The success factor for the scheme was outlined as a guideline for realizing accurate monitoring-diagnosis in bivariate quality control
    corecore